
Multimedia Systems (2006) 11(5): 480–494
DOI 10.1007/s00530-006-0017-1

REGULAR PAPER

Hung-Kuang Chen · Chin-Shyurng Fahn ·
Jeffrey J. P. Tsai · Rong-Ming Chen · Ming-Bo Lin

Generating high-quality discrete LOD meshes
for 3D computer games in linear time

Published online: 24 March 2006
c© Springer-Verlag 2006

Abstract The real-time interactive 3D multimedia applica-
tions such as 3D computer games and virtual reality (VR)
have become prominent multimedia applications in recent
years. In these applications, both visual fidelity and degree
of interactivity are usually crucial to the success or fail-
ure of employment. Although the visual fidelity can be in-
creased using more polygons for representing an object,
it takes a higher rendering cost and adversely affects the
rendering efficiency. To balance between the visual quality
and the rendering efficiency, a set of level-of-detail (LOD)
meshes has to be generated in advance. In this paper, we
propose a highly efficient polygonal mesh simplification al-
gorithm that is capable of generating a set of high-quality
discrete LOD meshes in linear run time. The new algorithm
adopts memoryless vertex quadric computation, and sug-
gests the use of constant size replacement selection min-
heap, pipelined simplification, two-stage optimization, and
a new hole-filling scheme, which enable it to generate very
high-quality LOD meshes using relatively small amount of
main memory space in linear runtime.

Keywords Interactive 3D multimedia · Computer game ·
Virtual reality · Mesh simplification · Level-of-detail mesh ·
Iterative full-edge collapse

H.-K. Chen (B) · M.-B. Lin
Department of Electronic Engineering, National Taiwan
University of Science and Technology, Taipei, Taiwan, R.O.C.
E-mail: hank@asia.edu.tw, mblin@et.ntust.edu.tw

H.-K. Chen · R.-M. Chen
Department of Information and Design, Asia University,
Taichung, Taiwan, R.O.C.
E-mail: rmchen@asia.edu.tw

C.-S. Fahn
Department of Computer Science and Information Engineering,
National Taiwan University of Science and Technology, Taipei,
Taiwan, R.O.C.

J. J. P. Tsai
Department of Computer Science, University of Illinois
at Chicago, U.S.A.
E-mail: tsai@cs.uic.edu

1 Introduction

The polygonal mesh has been the major representation
scheme of the 3D objects in interactive 3D multimedia appli-
cations such as 3D computer games and virtual reality (VR)
that has become one of the most popular multimedia applica-
tions in recent years [1]. Essentially, both the visual fidelity
and degree of interactivity play important roles in such ap-
plications. Since the objects are represented by a polygonal
mesh, the increase of visual fidelity usually raises the render-
ing cost by using more polygons, which adversely influences
the rendering efficiency. To trade off between the visual fi-
delity and interactivity, the level-of-detail (LOD) technique
is commonly employed to adaptively adjust the resolution of
the objects by selecting from a set of pre-built LOD meshes
according to their importance [2].

To fill such need, the 3D objects are usually pre-
converted into a set of different resolution meshes by a
polygonal mesh simplification algorithm before their use.

Figure 1 shows an example of the LOD meshes in which
the resolution of the Dragon meshes are decreased in propor-
tion to the distance from the viewer. In the figure, four LOD
meshes comprising 27 K, 8.8 K, 3 K, and 1 K triangles are
placed from near to far to the viewer where one can hardly
tell the differences between these rendered images.

Besides the contributions to interactivity, the quality of
the resulting LOD meshes has great importance to the visual
fidelity. Significant shape features such as horns, claws, and
tails may be lost if a low-quality simplification algorithm

Fig. 1 The LOD control of the Dragon mesh according to the distance
from the viewer

Generating high-quality discrete LOD meshes for 3D computer games in linear time 481

is employed. Therefore, it is desirable to have a polygonal
mesh simplification algorithm that is capable of producing
high-quality LOD meshes.

In this paper, we propose a linear time polygonal mesh
simplification algorithm to generate high-quality discrete
LOD meshes with very low memory and runtime costs for
interactive 3D multimedia applications. The new algorithm
adopts memoryless vertex quadric computation and a con-
stant size replacement selection min-heap (RS-heap) to save
the main memory cost [3, 4]. By integrating the cost compu-
tations, RS-heap operations, and vertex ring simplifications
into a single pipeline, a two-stage optimization scheme to
remove unnecessary optimum placement calculations, and
an effective hole-filling method to fill the unwanted defec-
tive holes, the new algorithm is capable of generating very
high-quality LOD meshes in linear time.

In summary, the new algorithm has at least three ben-
efits. First, it is runtime efficient and takes only �(n) run
time. As a result, our algorithm is considerably faster than
non-linear time methods. Opposed to the other works that
claim to have linear run time [5–7], our algorithm accepts an
ordinary index-mesh representation without presuming any
special assumptions on the input sequence. Hence, it does
not need any conversion or pre-sorting stage over the entire
input sequence. Second, our algorithm is highly memory ef-
ficient. To simplify the David mesh (2 mm) that has over 7
million meshes in core, it takes only 307 MB main memory
space. Third, the new algorithm produces very good quality
LOD meshes.

The rest of this paper is organized as follows. Prior to the
discussion of our work, we will first briefly review some of
related works and terms in Sects. 2 and 3. Our new simpli-
fication algorithm will be discussed in Sect. 4 followed by
an analytical analysis of its running time. Section 5 presents
the experimental results to show the effectiveness of the new
data structures used in the simplification algorithm. Section
6 gives the conclusions of this paper.

2 Review of related works

This paper addresses the issue of generating high-quality
discrete LOD meshes. Some related simplification algo-
rithms will be reviewed first followed by the overview of
LOD schemes in the second subsection. Since there are a lot
of excellent works proposed in these fields, the review here
is quite limited. We suggest readers refer to the book written
by Lubke et al. for a more complete survey [2].

2.1 The review of the mesh simplification algorithms

The polygonal mesh simplification algorithm can be em-
ployed for at least three purposes. First, it can be used to
optimize the shape of an object subject to a pre-specified
constraint. Second, it can be used to create a set of approxi-
mations in a variety range of resolutions of an object. Third,

it can be used to perform either lossy or lossless data com-
pression over the input mesh, which saves storage or trans-
mission costs.

There are at least two types of polygonal mesh sim-
plification algorithms that are commonly used: re-sampling
methods [5, 8–11] and iterative contraction methods [3, 6, 7,
12–24]. The re-sampling methods usually run in linear time
but yield relatively lower quality outputs. On the other hand,
the iterative contraction methods usually produce very good
quality outputs, but they run much slower than the spatial
partitioning methods. In applications such as the 3D com-
puter games, the discrete LOD is preferred for its low pro-
cessing cost at running time, which gives more time to cal-
culations such as the collision detection, scene update, and
game AI, etc. [2]. Since we are interested in generating high-
quality static LOD meshes, the review will be restricted to
those using iterative edge collapses.

The mesh simplification is first treated as an optimization
problem by Hoppe et al. [13]. In their work, three topologi-
cal operators – the edge collapse, vertex split, and edge swap
are applied iteratively to minimize a heuristic energy func-
tion for estimating the deviation between the current mesh
and the original surface. The algorithm produces very good
quality outputs; however, the runtime cost is unacceptably
long due to its exponential complexity of running time. In
a later work [14], they proposed a data structure called the
progressive mesh (PM) generated by a greedy-based frame-
work using iterative edge collapses. According to their pa-
per, in addition to the contribution of the new data struc-
ture, the time complexity was also considerably improved to
O(nlogn) provided that the input mesh has n faces.

Similar to the plane-based error metrics proposed by
Ronfard and Rossignac [15], Garland et al. proposed the
quadric error metrics (QEM) [16] to calculate the sum of
squared distances from a relocated vertex to the set of planes
spanned by all faces in its neighborhood. In the light of their
work, the QEM can be extended to handle vertex attributes
such as vertex normal, vertex color, and texture coordinate
[19–23]. A more recent work has even extended this metrics
to any dimension [24]. In [16], the face quadrics as well as
all the vertex quadrics are computed and saved before sim-
plification. Lindstrom and Turk suggested the computation
of vertex quadrics is performed on the fly with the simplifi-
cation [3]. This scheme eliminates the need of storage space
for saving the vertex quadrics and is called the memoryless
simplification. According to their results, this scheme gen-
erates better quality outputs at the cost of poorer runtime
efficiency.

Opposed to conventional greedy based approach, an-
other steam of work using multiple-choice technique was
proposed in [6]. This methods runs in linear time; however, it
requires a random sampling process that may require O(d2)
time to get d different samples. A later work extended this
scheme to simplify large meshes [7]. The improved algo-
rithm is successful, but the input stream is assumed to be a
sequence of spatially ordered polygon soup. Once if the in-
put mesh does not satisfy this assumption, an external sort

482 H.-K. Chen et al.

over the input stream that takes at least O(nlogn) might be
required; otherwise, the simplification might fail to proceed
if the input mesh contains many holes.

2.2 The review of the leve-of-detail schemes

The basic principles of LOD techniques were proposed by
Clark in 1976, in which he remarked that it is redundant to
use many polygons for an object while it covers only a few
pixels [25]. The hierarchical scene graph structure and con-
cept of view-frustum culling were also proposed in the lit-
erature to eliminate such redundancy. To address such issue,
tons of works are proposed thereafter. In accordance with
[2], three basic frameworks for managing LOD are avail-
able: the discrete, continuous, and view-dependent LOD.

The discrete LOD, or known as the static LOD, is the
traditional approach proposed by Clark [25]. This approach
adopts a set of fixed size meshes in various resolutions gen-
erated offline by a mesh simplification algorithm. A runtime
daemon is employed in 3D computer games to select an ap-
propriate mesh from the LOD meshes according to certain
criteria such as those proposed by [26]. The discrete LOD
scheme suffers from the hopping side effect that leads to vi-
sual disturbance, which can be minimized by blending the
rendered images of successive LOD meshes [27]. Despite
the inefficiency of memory consumption and the visual dis-
turbances caused by the hopping effect during LOD switch-
ing, the discrete LOD is still by far the most commonly used
LOD scheme in the interactive 3D applications.

Opposed to the discrete LOD, the continuous LOD, or
the dynamic LOD, is essentially a continuous spectrum of
LODs essentially consists of a coarse mesh and a series of
refinement records [2]. Rather than selecting an appropriate
LOD mesh, the LOD manager has to synthesize the desired
mesh by applying necessarily refinements to the coarse mesh
at runtime. Such a LOD scheme is also called the progressive
mesh (PM) [14, 23]. This LOD scheme can be considered as
a lossless compression method if the resulting mesh size is
smaller than the original. However, it takes a great amount
of time to generate the desired mesh at runtime; hence, it
is usually not applied in interactive 3D multimedia applica-
tions, e.g., the 3D computer games and virtual reality.

The view-dependent LOD is intrinsically a hierarchical
representation of the original mesh, which supports range
queries to a certain region of the mesh [2]. Examples can
be found in [28–32]. The major benefit of this scheme is a
better distribution of the polygon resource, which ensures
better fidelity. Such a scheme is usually employed in terrain
rendering, scientific visualizations, and large model inspec-
tion or editing applications.

3 Terminologies

Our new algorithm adopts vertex-ring-based simplification,
iterative full edge collapses, the quadric error metrics, and a

Fig. 2 The ring of a vertex vi

constant size RS-heap. Thus, before introducing our work,
a brief review on a number of related works and terms are
given as follows.

3.1 Topological notations

In topology convention, an n-simplex is a topological entity
defined by n + 1 vertices. Hence, a 0-simplex is a vertex,
a 1-simplex is an edge, and a 2-simplex is a triangle, and
so forth. Given an n-simplex s, the (n − 1)-simplices that
bound it are called the faces of s. Therefore, the edges that
constitute a triangle t are the faces of t, and the endpoints of
an edge e are the faces of e. Let s be an n-simplex and S be
a set of n-simplices, the following operators are used in this
paper.

�s� : the set of (n + 1)-simplices that s is a face of.
�s� : the set of faces of the n-simplex s.
∂S: the boundary faces of S.

3.2 The ring

Let ri be the ring of a vertex vi . With the notations from
Sect. 3.1, it can be denoted as ��vi��, which is essentially
the set of triangles adjacent to vi , or ri = { f j | f j ∈ ��vi��}.
In the example shown in Fig. 2, the ring of the vertex vi is
ri = { f0, f1, f2, f3, f4, f5}.

Therefore, the internal edges (stars) of ri = �vi�, the
boundary edges (crown) of ri = ∂ri = �ri� − �vi�, and the
boundary vertices of ri = ��vi�� − �vi�.

3.3 The edge collapse

Given an undirected edge vsvt connecting vertices vs and vt ,
let the ring of vs and vt be rs and rt , respectively. The edge
collapse operator that removes vsvt from the input mesh
M(V, F) generates a simplified mesh M’(V’, F’) through the
following procedure.

1. Find I = rs ∩ rt and let S = rs − I .
2. Let F ′ = F − I and V ′ = V − vs .
3. ∀ f ∈ S, replace the index of vs with that of vt .
4. Relocate vt such that the error cost ε is minimized.

Note that Step 4 is usually computed in advance to facil-
itate global optimization with respect to the error costs. An
example is presented in Fig. 3 where vt is relocated to vn .

Generating high-quality discrete LOD meshes for 3D computer games in linear time 483

Fig. 3 An example of the edge collapse

3.4 The quadric error metrics

Unlike the plane-based error metrics proposed by Ronfard
and Rossignac that measures the maximum distance from
a set of planes to a given vertex, the quadric error met-
rics (QEM) efficiently calculates the sum of squared dis-
tances from a set of planes to the vertex by matrix techniques
[15, 16]. Since we have adopted such metrics in our new al-
gorithm, we will briefly review it as follows.

Given a plane ax + by + cz + d = 0 or nTv + d = 0
where n = [a b c]T is the unit face normal and d is a scalar
constant, the squared distance from a vertex v = [x y z]T

to the plane can be depicted below:

D(v) = (nTv + d)2 = vTnnTv + 2dnTv + d2. (1)

Then the fundamental quadric Q of this plane is defined
as a 4 × 4 symmetric matrix as follows:

Q =
[

A b

bT d2

]
=

[
nnT dn

dnT d2

]
=

⎡
⎢⎢⎢⎣

a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2

⎤
⎥⎥⎥⎦ .

(2)

Accordingly, the squared distance from a vertex v to the
plane can be calculated by

Q(v) = v̄TQv̄, (3)

where v̄ = [vT 1] = [x y z 1]T is the vertex v in a homo-
geneous coordinate system.

Given a vertex v, its vertex quadric is defined as the sum
of the fundamental quadrics of the planes spanned by the
faces incident to v. Let ri be the set of faces incident to vertex
vi and Q j be the face quadric of face f j , where f j ∈ ri . Thus,
the vertex quadric of vi is

Qv
i =

∑
∀ f j ∈ri

Q j . (4)

Considering an edge vsvt , let the edge collapse perform
the removal of vsvt and introduce a new vertex vn . The dis-
tance from vn to the original surface can be estimated by the
distance from vn to the set of planes spanned by the surfaces

incident to vs or vt . Let rs and rt be the rings of vs and vt , re-
spectively. The error distance from vn to the original surface
can be given by Qv

n(vn), where

Qv
n = Qv

s + Qv
t =

∑
∀ fi ∈rs

Qi +
∑

∀ fi ∈rt

Qi . (5)

The error distance may be further minimized by solving
an optimal placement of the new vertex vn from ∇Qv

n(vn) =
2Avn + 2b = 0, or Avn = −b. Note that the linear system
has a unique solution only when the matrix A is non-singular
or invertible.

3.5 The replacement selection heap

The RS-heap is primarily used to generate sorted runs in the
first phase of large file sorting [4]. It has at least two ad-
vantages when it is compared with other in-place sorting
technique in sorted runs generation. First, with an array of
n locations, it is capable of generating sorted runs of length
equals 2n items in average for uniform random inputs. More-
over, when the file is approximately ordered, in specific, if
for each item in the input stream, there are no more than n
larger items before it, the input file can be sorted in a single
pass.

The records inserted to the RS-heap may fall into one
of two categories: current-run records or next-run records.
In a minimum RS-heap, if the inserted record is less than
the recently deleted record, it is tagged as a next-run record
and inserted to the next-run part of the heap; otherwise, it is
regarded as a current-run item and placed at the root of the
heap followed by a sift-down operation to adjust the heap.
We will assume the use of minimum RS-Heap throughout
this context unless otherwise stated.

An RS-heap may have three states: full of current-run
records, a mixture of current-run and next-run records, and
full of next-run records. To keep track of the boundary of
the current-run part and next-run part of the heap, a pointer
called trailing-current-run (TCR) pointer, denoted as TCP,
are used to point to the last current-run record of the heap.
When a heap is full of next-run records, a state change is
made by resetting the TCR pointer to the end of the heap,
which turns all the next-run records into current-run records
and start out a new sorted run.

The operation of an RS-heap comprises three stages, i.e.,
the initial, operation, and finale stages. Initially, the heap is
full of null records. At the initial stage, the algorithm iter-
atively deletes null records at root and inserts valid records
as next run items to the heap until the heap is full of valid
records. At the operation stage, valid records from input
stream are repeatedly inserted on the fly with the deletion of
records from the root of the heap until the end of the stream.
Following to the operation stage, the finale stage keep in-
serting null large key value records to the next-run part of
the heap to ensure that all the remaining valid records are
deleted from the heap.

484 H.-K. Chen et al.

m m m m

12 25 31 65

88 99 19 24

Input sream = {99, 12, 25, 31, 24, 65, 88, 19}

Output sream = {12, 25, 31, 65, 88, 99, 19, 24}

99 12 25 31

24 65 88 19

M M M M

m: minimum key value null record.

M: maximum key value null record.

m

m m

m

m 99

m

12 99

12

25 99

25

31 99

31

99 24

65

99 24

88

99 24

99

19 24

19

M 24

24

M M

M

M M

Fig. 4 An example of the process of sorted runs generation using the
RS-heap

The root deletion and insertion operations are applied
alternatively during the execution of the algorithm. Before
the new record is inserted, it has to be compared with the
recently deleted record: if the new record is smaller, it is
a next-run record; otherwise, it is a current-run record. A
next-run record is inserted to the next-run part of the heap
according to the following steps:

(a) Move the TCR record to the root.
(b) Insert the new record to the location of TCR record.
(c) Adjust the TCR pointer.
(d) Apply a sift-down operation to the sub-tree rooted by the

new record.

On the other hand, a current-run record is simply placed
at the root followed by a sift-down operation from the root
to the TCR record. Figure 4 shows an example illustrating
such sorted runs generation process using the RS-heap.

4 The simplification algorithm

The input of our algorithm are an indexed face mesh M(V,
F) comprising a set of vertices V in a 3D Cartesian space and
a set of triangular faces F represented by a triplet of indices
to V together with a variable goal specifying the minimum
number of faces of the output mesh. In our implementation,
the vertex and face tables, respectively, store the vertices and
faces of the input mesh.

Table 1 The seven data structures and their sizes

Data Notation Element type Element size (bytes) Number of elements

Vertex table V VertexT 12 |V|
Face table F FaceT 12 |F|
Ring table R VRingT 4 × 6a + 5b |V|
Vertex flags Fv Byte 1 |V|
Face flags Ff Byte 1 |F|
Contraction flags Fc Byte 1 |V|
Vertex index table Vi Unsigned integer 4 |V|

aOn an average, the degree of vertex connectivity is 6.
bThe basic storage cost of VRingT, which comprises an unsigned character used to keep the number of faces in the ring and a pointer to the array of face
indices.

There are seven data structures used by our algorithm,
i.e., the vertex/face arrays, vertex rings, vertex/face/ contrac-
tion flags, and vertex indices. A concise summary of these
data structures is listed in Table 1, which gives notations,
data types, element sizes, and the number of elements.

The ring table stores the vertex rings providing local con-
nectivity information of each vertex. The vertex and face
flags respectively indicate the presence of corresponding
vertices and faces, which are primarily used for exporting
the simplified mesh at the output stage. The third flag, or the
contraction flag, may be set to one of three possible values:
null, valid, or dirty, reflecting the contraction state of a ring.
All vertex rings are initialized to valid before the computa-
tion of contractions to the vertex rings. After the computa-
tion, if the procedure fails to find a valid contraction for a
vertex ring then its contraction flag will be set to null. In ad-
dition, the contraction flag of a vertex ring is set to dirty if
the vertex ring is a dependent ring of a previously performed
contraction. The definition of the dependent ring and how it
is related to the contraction will be given in Sect. 4.3. The
last table, or the vertex index table, keeps the index of each
remaining vertex in the new output mesh, which is used to
export valid faces at the output stage.

4.1 Algorithm overview

In the main, the algorithm runs iteratively through three
stages, i.e., the vertex ring construction, simplification, and
output stages, until the termination condition is satisfied. A
fragment of the pseudo-code of the new algorithm is given
as follows.

Algorithm: HighQualityMeshSimplification()
Input:

IndexFaceMesh M;
Integer goal.

Output:
IndexFaceMesh DLM[MAX_NO_OF_LEVELS].

Procedure:
ContractionRecord ComputeContractionCost(VertexRing r);
void HeapInsert (Heap H, ContractionRecord C);
ContractionRecord HeapDeleteRoot (Heap H);
void EdgeCollapse(ContractionRecord C);
IndexFaceMesh OutputLOD(void);

Generating high-quality discrete LOD meshes for 3D computer games in linear time 485

begin
int l = 1;

1. Initialize the flags and construct the set of vertex
rings, R = {ri |∀vi ∈V}.

2. Simplify the input mesh:
1) For i = 1∼k, where k is a small constant integer

and k≥1:
Ci = ComputeContractionCost(ri);
HeapInsert(H, Ci).

2) For i = k+1∼|V|:
If f c

i = 1,
Ci = ComputeContractionCost(ri);
Cs = HeapDeleteRoot(H);
HeapInsert(H, Ci);

If f c
t = 1,

perform EdgeCollapse(Cs);
If |F| < goal, proceed to Step 3.

3) Repeat the following operations until |H| = 0 or
|F| < goal:

Cs = HeapDeleteRoot(H);
If f c

t = 1,
perform EdgeCollapse(Cs);
If |F| < goal, proceed to Step 3.

3. DLM[l] = OutputLOD(); l = l+1;If |F| > goal, repeat
Steps 1–3.

end

During each pass of the iteration, the algorithm starts
with the construction of vertex rings. Following the vertex
rings construction, the simplification is performed to sim-
plify independent vertex rings until the termination condi-
tion is satisfied or no more vertex ring is valid to contract. At
the finale stage, the remaining vertices and faces are output
as a new level-of-detail approximation and as the input mesh
to the next pass of iteration. Consequently, if the simplifica-
tion takes k iterations, k level-of-detail approximations are
generated.

4.2 The vertex ring construction stage

In addition to the initialization of the three flag variables,
the vertex ring construction stage sets up the rings of every
vertex by traversing the entire set of faces. In our implemen-
tation, the rings consist of a dynamic allocated array of face
indices and a variable keeping the number of faces in the
ring, which is declared as follows.

VRingT = {
unsigned char degree;
unsigned int ∗ FaceIndexArray; }

The construction operations are summarized in the fol-
lowing:

For each face fi ∈ F, i = 1 ∼ |F |:
For each vertex v j of fi :

1. Insert fi to r j by:

Allocate an array of r j .degree +1 integers.
Copy the r j .degree items from the original array to

the newly allocated array.
Link the array pointer to the new array.
Delete the old array.

2. Increase degree of r j ;

In spite of the overhead introduced by frequent alloca-
tion and deletion of small-sized arrays, such implementation
has at least two benefits. First, the direct access to face in-
dices of the vertex ring rather than sequential pointer list
traversal is obviously more time efficient. In comparison
with the pointer list approach, the new implementation uses
much less space by using only one pointer. Contrast with our
previous approach [33, 34], the new implementation sets no
limit to the size of the ring; hence, it is more flexible and
uses much less memory space.

4.3 The simplification stage

The simplification process has three sub-stages correspond-
ing to the three phases of sorted runs generation using the
RS-heap, namely, the initialization, operation, and finale in
order [4]. A flow chart shown in Fig. 5 illustrates the simpli-
fication pipeline.

At the initial sub-stage, the algorithm simply performs
the cost computation and heap insertion operations repeat-
edly until the RS-heap is full of valid contraction records.
Next, at the operation sub-stage, the algorithm iteratively ex-
ecutes the cost computation, heap operations, and a full edge
collapse according to the contraction record retrieved from
the root of the heap if it passes the dependency check. At
the finale sub-stage, since all the rings are processed, no cost
computation is required. Instead of inserting new contraction
records, null records with largest possible costs are inserted
to the heap. The iteration stops when all the remaining valid
records are deleted from the heap or the termination condi-
tion is satisfied The detailed discussion of each step will be
given in the following subsections.

4.3.1 The dependency rules

In a strict way, an edge collapse is called the dependent
edge collapse of another edge collapse if its cost may vary
after the execution of that edge collapse. Most previous
works simply tag the boundary vertices and decline all the
edge collapses that involve these vertices [17]. However, this
approach requires a lot of minor important updates and takes
many levels of iteration. In our previous work [34], we have
developed a set of rules for dependency control that provides
various levels of relaxation to the definition of dependent
edge collapses. A similar version of such dependency con-
trol strategies used in this paper is defined as follows.

We can define three classes of dependent rings according
to the amount of modifications resulting from the execution
of an edge collapse. A formal definition is given below.

486 H.-K. Chen et al.

Fig. 5 A flow chart of the simplification stage

Definition 1 The Three Classes of Dependent Rings
Considering the full edge collapse of an edge est = vsvt ,

the dependent rings of the full edge collapse are defined as
follows.

1. Class A dependent rings of est , RA = {rs, rt };
2. Class B dependent rings of est , RB = {r j |est ∈ ∂r j };
3. Class C dependent rings of est , RC = {r j |vs ∈ ��v j�� −

v j ∨ vt ∈ ��v j�� − v j }.

An example illustrating the three classes of dependent rings
is given in Fig. 6, where the shaded regions represent the
dependent rings. According to Fig. 6, we can easily find that
in the Class A rings, an internal edge is deleted; in the Class
B rings, a boundary edge is deleted; whereas in the Class C
rings, none of the edges of the ring is deleted.

On the basis of the definition given above, we can derive
three dependent control strategies for various extent of
dependency control as follows.

Definition The Dependent Control Strategies

Given three classes of dependent rings: RA, RB , and RC ,
of an edge collapse, the three dependency control strategies,
Strategy I, II, and III, respectively, decline the collapse of

Fig. 6 a Class A, b Class B, c Class C dependent rings of the edge collapse of est

the edges in

EI = {e | e ∈ RA − ∂ RA},
EII = {e | e ∈ RA − ∂ RA ∪ RB − ∂ RB},
EIII = {e | e ∈ RA − ∂ RA ∪ RB − ∂ RB ∪ RC − ∂ RC }.

In our implementation, a sentinel called the contraction
flag is used to keep track of the contraction state of a vertex
ring. If the contraction flag of a vertex ring is dirty, it is not
contractable. Furthermore, if the contraction flag of one of
the endpoints of an edge is dirty, the collapse of this edge is
not valid. Since we are using a small constant heap, the algo-
rithm will avoid ring contractions by collapsing such edges.

It is important to know the portion of contracted rings,
denoted as Pc, in a pass of simplification, which determines
not only the running time efficiency of the algorithm but also
the number of LOD meshes generated. Provide that the in-
put mesh is manifold mesh, the portion of contracted rings
is roughly equal to the ratio of contracted rings over its de-
pendent rings. Let PI,c, PII,c, and PIII,c, respectively denote
the portion of contracted rings using Strategy I–III. Thus,

PI,c = |{rs}|
|RA| = |{rs}|

|{rs, rt }| = 1

2
= 50%, (6)

PII,c = |{rs}|
|RA ∪ RB |

∼= |{rs}|
|{rs, rt , rl , rr }| = 1

4
= 25%, (7)

Generating high-quality discrete LOD meshes for 3D computer games in linear time 487

Fig. 7 An example of holes in a mesh and the hole-filling process, a the original Youthful mesh: both its front and back sides contain numerous
holes, b the simplified Youthful mesh (1,000) triangles without hole filling, c the simplified Youthful mesh (1,000 triangles) with hole filling, d
an example of the hole-filling process

and for the average case

PIII,c = |{rs}|
|RA ∪ RB ∪ RC |

∼= 1

10
= 10%. (8)

However, it is possible that all the internal edges of a
ring are invalidated by previous contractions, which makes
the ring turns into null state. Fortunately, this situation is rare
in practice. According to the evaluations presented in [34],
Strategy I is the best policy; hence, we will adopt it in this
paper.

4.3.2 The cost computation and hole filling

From the experimental outcomes, we have found some vi-
sual defects resulting from the enlargement of the tiny holes
of the original mesh as shown in Fig. 7a. Such tiny holes
looked insignificant when the mesh is at high resolution. As
the simplification proceeds, if these holes are not properly
treated, they will become large cracks indicated in Fig. 7b.

To treat such a problem, we enforce the contraction to
the ring of boundary vertices to the boundary edges of the
mesh. An example of such process is illustrated by Fig. 7d.
To do this, we first calculate the multiplicity of each internal
edge during the construction of the set of boundary vertices
of the ring. If the ring has some internal edges whose multi-
plicity equals one, we will enforce the contraction of the ring
by collapsing one of these edges. Figure 7c shows the sim-
plification results of our algorithm on the Youthful (2 mm)

mesh from the Project of Michelangelo [2], which proves
that our algorithm can effectively fill such holes rather than
enlarge it. What follows is the pseudo-code for such cost
computation and hole-filling procedure computing the best
contraction Ci for a vertex ring ri .

Procedure CostComputation(VRingT ri)
Input: VRingT ri .
Output: ContractionRecord Ci .
begin

Let cost be a large number.
Compute the vertex quadric Qv

i of vi , ∀vi ∈ ri .
Find bi = ��vi�� − vi .
Compute the multiplicity of ei j , m(ei j), ∀ internal edges

ei j = (vi , v j) ∈ ri , where v j ∈ bi .
For all v j of bi :
If there exists an ei j in ri whose multiplicity m(ei j) = 1,

If m(ei j) = 1 and cost ≥ Qv
i (v j),

cost = Qv
i (v j);

Ci = (ei j , Qv
i (v j), Qv

i);
else

If cost ≥ Qv
i (v j),

cost = Qv
i (v j);

Ci = (ei j , Qv
i (v j), Qv

i).
end

Note that the procedure chooses from valid internal outward
half-edges the one with smallest error cost computed by the

488 H.-K. Chen et al.

quadric error metric. Actual full edge collapse with optimum
placement is performed later in the edge collapse procedure.

The full edge collapse

The full edge collapse of our algorithm is similar to the
one in Sect. 3.3 except that the optimal placement is not
computed in advance. Instead, we find the optimal posi-
tion of the new vertex only after the edge collapse is actu-
ally performed. Consequently, all the unnecessary optimum
placement computations are avoided. Furthermore, to avoid
wrong solutions caused by numerical errors, the placement
of the new vertex is computed according to the following
formula:

vn =
{

vt if |vsvo|2 + |vovt |2 ≥ |vsvt |2
vo otherwise,

(9)

where vo is the calculated optimal placement of the new ver-
tex vn .

The pseudo-code of the edge collapse procedure is given
as follows.

Procedure EdgeCollapse(ContractionRecord C)
Input: ContractionRecord C = (est , Qs(vt), Qs);
begin

Delete vs from V;
Find I = rs ∩ rt and let S = rs − I ;
Delete all f of I from F;
Replace the index of vs with that of vt , ∀ f ∈ S;
Set both f c

s and f c
t to be dirty;

Calculate Qv
t and let Qv

t = Qv
s + Qv

t ;
Find the optimal placement vo via solving

∇Qv
t (vo) = 2Avo + 2b = 0;

Relocate vt to vn in accordance with

vn =
{

vt if |vsvo|2 + |vovt |2 ≥ |vsvt |2
vo otherwise.

end

4.4 The output stage

In this paper, we only concentrate on the real-time interac-
tive 3D multimedia applications such as 3D computer games
and virtual reality. In consequence, we apply our linear time
algorithm to generate the discrete LOD only. The output
stage exports the remaining vertices and faces. Since the
algorithm is iteratively performed to simplify independent
vertex rings of the input mesh, the output stage is capable of
generating a new LOD mesh in the end of each pass of it-
eration. If the algorithm takes k passes to simplify the mesh
to the coarsest resolution, k LOD meshes can be generated.
These LOD meshes constitute a set of discrete LOD repre-
sentations of the input mesh in which the original mesh is
the level-0 LOD mesh, or M0, and the output mesh of the
i-th pass of iteration is the level-i LOD mesh, or Mi .

4.5 Time complexity analysis

Let M1(V1, F1), M2(V2, F2), . . . , and Mi (Vi , Fi) be the out-
puts from the 1st, 2nd, . . . , and i-th pass of simplification,
respectively. By applying Strategy I of dependency control,
about 50% rings are contracted for each pass of iteration ac-
cording to Eq. (6). Thus,

|V1| ≈ n − n

2
,

|V2| ≈ |V1| − |V1|
2

= |V1|
2

≈ n ·
(

1

2

)2

,

...

|Vi | ≈ |Vi−1| − |Vi−1|
2

= |Vi−1|
2

≈ n ·
(

1

2

)i

.

Let n0 be the number of vertices of the lowest resolution
mesh specified by the termination condition variable and
the simplification successfully stops during the m-th pass of
simplification. Since the number of remaining vertices after
the m-th pass of simplification is roughly equal to n · (1

2)m,

n0 ≥ n ·
(

1

2

)m

, (10)

By taking logarithms on the both sides, we have

log2 n0 ≥ log2 n − m

⇒ m ≤ log2 n − log2 n0

⇒ m = O(log n) (11)

Let T1,i , T2,i , and T3,i , respectively, be the running times
of the vertex construction, simplification, and output stages
of the i-th pass of simplification. The time complexity of the
algorithm is

m∑
i=1

(T1,i + T2,i + T3,i). (12)

Since the preprocessing stage needs only a single pass
over the entire face table, the running time of this stage in
the i-th pass of simplification is

T1,i = �(|Fi |) = �(|Vi |). (13)

The simplification stage comprises three sub-stages, i.e.,
the initialization, operation, and finale sub-stages, which
takes |Vi | + h steps for the i-th pass of simplification if the
heap size is h. Since the running time of each step is the
sum of the running times of a cost computation, two heap
operations, and a full edge collapse, if the heap size h is a
small constant value, the total cost of each step remains con-
stant, or O(1), with respect to the input size n. Therefore, the
running time for the i-th pass of simplification of the simpli-
fication stage is

T2,i =
|Vi +h|∑

i=1

O(1) = �(|Vi |). (14)

Generating high-quality discrete LOD meshes for 3D computer games in linear time 489

Table 2 Test models and their statistics

Model Number of vertices Number of faces

Rabbit 67,038 134,074
Dragon 437,645 871,414
Happy Buddha 543,652 1,087,716
Blade 882,954 1,765,388
David (2 mm) 3,614,098 7,227,031
Dawn (1 mm) 3,432,236 6,594,103
Youthful (2 mm) 1,728,305 3,411,563
Awakening (2 mm) 2,057,930 4,060,497

The output stage consists of two loops exporting remain-
ing vertices/faces from the vertex/face table. Thus, the run-
ning time for the i-th pass of simplification of this stage is

T3,i = �(|Vi |) + �(|Fi |) = �(|Vi |). (15)

From Eqs. (12)–(15), the overall running time of our al-
gorithm is

T =
m∑

i=1

(T1,i+T2,i + T3,i) = �(n). (16)

5 Experimental results

In this paper, all the experiments were executed on a per-
sonal computer equipped with an Intel Pentium IV 2.2 GHz
processor, 1 GB DDR DRAM, and an disk RAID of two IDE
7,200 RPM hard disks running Microsoft Windows 2000
SP4. All the program codes are written in C++ and com-
piled by Microsoft VC++ 6.0. To provide enough evidence,
eight meshes are used to verify the effectiveness of the new
algorithm. The Rabbit, Dragon, Happy Buddha, and Blade
meshes are retrieved from the Stanford 3D Scanning Repos-
itory (http:// www-graphics.stanford.edu/data/3Dscanrep/),
whereas the David (2 mm), Dawn (1 mm), Youthful (2 mm),
and Awakening (2 mm) meshes are downloaded from
the Digital Michelangelo Project Archive of 3D Mod-
els (http://www-graphics.stanford.edu/dmich-archive/) [35].
The statistics of these meshes are listed in Table 2.

Two famous iterative edge collapse-based methods, the
QSlim V2.0 [36], M. Garland’s implementation of [16],
and the multiple choice algorithm (MCA) [6], are used to
provide a fair basis of comparisons. The QSlim V2.0 is a
conventional greedy-based approach that has O(|V | log |V |)
time complexity while the MCA is a multiple random
choice-based algorithm running in linear time. Since we do
not have the author’s implementation of the MCA, we will
use our own implementation of it in the experiments. Hence,
the results may be slightly different from those presented in
[6]. In order to measure the geometric errors, another pub-
lic domain available package, Metro V3.1 [37], is employed
to analyze the resulting meshes. We will compare the three
different approaches in terms of the main memory costs, run-
times efficiency, and output quality through Sects. 5.1–3.
Note that, in all experiments, we let d = 8 and heap size =
512 records for the MCA and HQMS methods, respectively.

5.1 Memory costs

According to Table 1, our new algorithm (HQMS) requires
47 × |V | + 13 × |F | ∼= 73 × |V | bytes for buffering both the
input and intermediate data. In comparison with the QSlim
and MCA methods that cost about 268 × |V | and 105 × |V |
bytes,1 respectively [6, 16], the main memory cost of the
HQMS is significantly lower. Since the main memory con-
straint is 1GB, QSlim V2.0 cannot be employed to sim-
plify the David (2 mm) and Dawn (2 mm) meshes. Table 3
presents the peak main memory costs of the QSlim, MCA,
and HQMS methods during the simplification of the eight
test meshes.

According to the results shown in Table 3, it is obvious
that the HQMS uses much less main memory than the other
two methods, which implies that, with the same amount of
main memory resource, HQMS is capable of simplifying
larger meshes than the other two methods.

5.2 Runtime efficiency

To analyze the runtime performance of the HQMS, the eight
test meshes are simplified down into 1,000 triangles using
the three methods. The runtime performance in terms of the
overall execution times and triangle reduction rates of the
three approaches are presented in Table 4. For the same rea-
son as we have stated in previous subsection, QSlim is not
able to simplify the David and Dawn meshes with 1 GB main
memory; thus, the results on these two meshes are not avail-
able.

The results in Table 4 shows that the new linear time
algorithm HQMS is not only faster than the O(|V | log |V |)
greedy-based QSlim V2.0 but also significantly faster than
the linear time MCA method. The triangle reduction rate of
the HQMS is around five times higher than that of the QSlim
V2.0 and three times higher than that of the MCA, which are
higher than 130 K triangles (1 K = 1,000) per second. Ob-
viously, we can conclude that our new linear time approach
is significantly better than the other two methods in terms of
runtime efficiency.

5.3 Output quality

The quality measurement is difficult and depends on the ap-
plications in use. In this paper, the evaluation is given by
means of the geometric errors and the rendered images of
the outputs. However, owing to the limitation imposed by
the Metro V3.1, such measurements cannot be performed
to meshes whose sizes are larger than 2 millions triangles
[37]. Therefore, the comparisons on geometric errors are re-
stricted to the LOD meshes of the Rabbit, Dragon, Happy
Buddha, and Blade meshes.

1 40 × |V | bytes for the vertex quadrics, 29 × |V | bytes in average
for the vertex rings, and 36 × |V | bytes for the base mesh.

490 H.-K. Chen et al.

Table 3 The main memory costs (KB)

Rabbit Dragon Happy Buddha Blade David Dawn Youthful Awakening

QSlim V2.0 25,048 158,136 197,152 314,444 N/A N/A 613,848 735,304
MCA 12,936 81,160 100,760 161,488 657,952 616,188 312,872 372,164
HQMS 6,608 40,052 49,888 78,808 314,840 293,884 148,672 178,388

Table 4 The running times and reduction rates

Rabbit Dragon Happy Blade David Dawn Youthful Awakening

Running time (s)
QSlim 4 26 32 50 N/A N/A 110 136
MCA 2 17 21 34 162 143 70 83
HQMS 1 6 7 12 55 50 25 30

Reduction rate (KTriangles/s, 1 K = 1,000)
QSlim 33 33 34 35 N/A N/A 31 30
MCA 55 51 51 52 45 46 49 49
HQMS 146 149 147 149 130 132 137 135

Fig. 8 The mean geometric errors of the LOD meshes of the Rabbit, Dragon, Happy Buddha, and Blade meshes generated by the QSlim V2.0
(default configuration), MCA (d = 8) and HQMS (heap size = 1,023)

Figure 8 shows the comparisons on geometric errors
of the LOD meshes generated by QSlim V2.0, MCA, and
HQMS methods, which includes the geometric errors of
the LOD meshes of the Rabbit, Dragon, Happy, and Blade
meshes measured by Metro. It is pretty obvious that our
new method (HQMS) outperforms the other two methods
by yielding lower error outputs.

On the other hand, the comparisons on visual quality via
rendered images of the LOD meshes generated by the three
methods are presented in Figs. 9 and 10 where all the il-

lustrative rendered images are derived from smooth shad-
ing via the OpenGL V1.2. For the same reason as we have
mentioned earlier, QSlim V2.0 are not able to generate LOD
meshes of the David and Dawn meshes using only 1 GB
main memory; hence, the images of these two meshes are
generated by using 2 GB main memory in the same plat-
form. In addition, a portion of the LOD meshes of the David,
Dawn, Youthful, and Awakening meshes created by HQMS
are demonstrated in Figs. 11–13.

Generating high-quality discrete LOD meshes for 3D computer games in linear time 491

Fig. 9 The 1,000 triangles LOD meshes generated by the a QSlim, b MCA, c HQMS methods

Through examining the images shown in Fig. 9, one
could easily found that our new method featured with two-
stage optimization and enhanced hole-filling capability ob-
viously outdoes the other two by generating far better qual-
ity outputs especially for meshes with numerous holes, e.g.,
the Dawn, Youthful, and Awakening meshes. Thus, the new
hole-filling scheme is evidently successful.

Through the comparisons we have provided thus far, it is
sufficient to conclude that the HQMS is a very efficient and
effective approach to producing high-quality discrete LOD
meshes for interactive multimedia applications such as 3D
games and virtual reality (VR).

492 H.-K. Chen et al.

Fig. 10 The LOD meshes of the David (2 mm) mesh generated by the HQMS

Fig. 11 The LOD meshes of the Dawn (1 mm) mesh generated by the HQMS

Fig. 12 The LOD meshes of the Youthful (2 mm) mesh generated by the HQMS

Generating high-quality discrete LOD meshes for 3D computer games in linear time 493

Fig. 13 The LOD meshes of the Awakening (2 mm) mesh generated by the HQMS

6 Conclusions

In this paper, we have addressed the issue of generating very
high-quality discrete LOD meshes for interactive multime-
dia applications such as the 3D computer games and virtual
reality and proposed a new runtime and memory efficient
polygonal mesh simplification algorithm capable of gener-
ating very good quality discrete LOD meshes within linear
running time.

The new algorithm integrates the vertex quadrics com-
putation, costs evaluation, optimization, and vertex ring
contractions into a single pipeline. This new design elimi-
nates not only the storage cost of the vertex quadrics by us-
ing the memoryless quadrics computation suggested by [3]
but also the cost of the contraction queue by replacing the
large greedy queue with a small constant size RS-heap. In
addition, we have suggest a two-stage optimization scheme
to save computation overhead resulting from unnecessary
calculations for optimum placements and a simple and ef-
fective approach to fill the undesirable holes of the meshes.

According to the empirical evidences we have provided
in Sect. 5, the proposed algorithm is very successful. It not
only outperforms the QSlim V2.0 that runs in O(|V | log |V |)
but also the linear time MCA method in runtime efficiency.
Besides this, the memory consumption of our algorithm is
also significantly lower than those of the QSlim, MCA, and
most other similar algorithms [4, 6, 12–19]. In practice, we
have successfully simplified the Lucy mesh that comprises
more than 28 million triangles using 1.2 GB main memory
space in 328 s on a 2.2 GHz Intel Pentium IV PC, which im-
plies this method also has the ability to deal with an extent
of large meshes. Furthermore, according to the comparisons
we have made in Figs. 8 and 9, the new algorithm (HQMS) is
proved to have the capability of producing very high-quality
LOD meshes that are even superior to those generated by
the greedy based (QSLIM V2.0) and multiple choice based
(MCA) methods. Concluding from previous statements, we
believe that the new method is very suitable for discrete
LOD mesh generations in most interactive 3D multimedia
applications.

In spite of the advantages we have mentioned above,
the outputs of the new algorithm share the same disadvan-
tages with the discrete LOD, i.e., the large disk I/O latency

and bandwidth for loading the LOD meshes and the visual
disturbance caused by the hopping effect while switching
LODs. To deal with such problem, we will improve the new
algorithm by introducing the option of producing continuous
and view-dependent LODs in addition to discrete LOD for
progressive viewing or transmission and visualization appli-
cations, respectively. Moreover, we do not address the is-
sue of color and texture preservation in this paper since the
quadric error metrics itself can be extended to process such
attributes naturally. One who is interested in the preserva-
tion of theses additional attributes may refer [16, 19–24].
Another interesting topic involves animation, a number of
works on this issue have been proposed to animate/morph
the LOD meshes [38, 39].

Acknowledgements We would like to thank the 3D Scanning Repos-
itory and the Digital Michelangelo Project Archive of 3D Models for
providing us all the test models. We also give our gratitude to Michael
Garland for making his QSlim V2.0 available, Paolo Cignoni et al. for
providing the Metro V3.1, and the anonymous reviewers for their pre-
cious comments and suggestions.

References

1. Watt, A.: 3D Computer Graphics, 3rd ed. Addison-Wesley,
Reading, MA (2000)

2. Luebke, D. et al.: Level-of-Detail for 3D Graphics. Morgan
Kaufman, San Francisco, CA (2003)

3. Lindstrom, P., Turk, G.: Evaluation of memoryless simplification.
IEEE Trans. Vis. Comput. Graph. 5(2), 98–115 (1999)

4. Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-
Wesley, Reading, MA (1973)

5. Lindstrom, P.: Out-of-core simplification of large polygonal mod-
els. In: Proceedings of the SIGGRAPH ’00, vol. 34, pp. 259–270
(2000)

6. Wu, J., Kobbelt, L.: Fast mesh decimation by multiple-choice
techniques. In: Proceedings of 7th International Fall Workshop on
Vision, Modeling, and Visualization, pp. 241–248 (2002)

7. Wu, J., Kobbelt, L.: A stream algorithm for the decimation of
massive meshes. In: Proceedings of the Graphics Interface ’03,
pp. 185–192 (2003)

8. Rossignac, J., Borrel, P.: Multi-resolution 3D approximation for
rendering complex scenes. In: Proceedings of the Geometric Mod-
eling in Computer Graphics ’93, pp. 455–465 (1993)

9. Low, K.L., Tan, T.S.: Model simplification using vertex clustering.
In: Proceedings of the Symposium on Interactive 3D Graphics ’97,
pp. 75–82 (1997)

494 H.-K. Chen et al.

10. Lindstrom, P., Silva, C.T.: A memory insensitive technique for
large model simplification. In: Proceedings of the IEEE Visual-
ization ’01, vol. 35, pp. 121–126 (2001)

11. Shaffer, E., Garland, M.: Efficient adaptive simplification of mas-
sive meshes. In: Proceedings of the IEEE Visualization ’01,
pp. 127–134 (2001)

12. Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of tri-
angle meshes. In: Proceedings of the SIGGRAPH ’92, vol. 26,
pp. 65–70 (1992)

13. Hoppe, H. et al.: Mesh optimization. In: Proceedings of the
SIGGRAPH ’93, vol. 27, pp. 19–26 (1993)

14. Hoppe, H.: Progressive meshes. In: Proceedings of the
SIGGRAPH ’96, vol. 30, pp. 99–108 (1996)

15. Ronfard, R., Rossignac, J.: Full-range approximation of triangu-
lated polyhedra. In: Proceedings of the Eurographics ’96, vol. 15,
no. 3, pp. 67–76 (1996)

16. Garland, M., Heckbert, P.S.: Surface simplification using quadric
error metrics. In: Proceedings of the SIGGRAPH ’96, vol. 30,
pp. 209–216 (1997)

17. Kobbelt, L., Campagna, S., Seidel, H.P.: A general framework for
mesh decimation. In: Proceedings of the Graphics Interface ’98,
pp. 43–50 (1998)

18. Campagna, S., Kobbelt, L., Seidel, H.P.: Efficient decimation of
complex meshes. Technical Report, Computer Graphics Group,
University of Erlangen-Nürnberg, Germany (1998)

19. Hoppe, H.: New quadric metric for simplifying meshes with ap-
pearance attributes. In: Proceedings of IEEE Visualization ’99,
pp. 59–66 (1999)

20. Cignoni, P., Montani, C., Rocchini, C., Scopigno, R.: A general
method for preserving attribute values on simplified meshes. In:
Proceedings of IEEE Visualization ’98, pp. 59–66 (1998)

21. Cohen, J., Manocha, D., Olano, M.: Simplifying polygonal models
using successive mappings. In: Proceedings of IEEE Visualization
’97, pp. 395–402 (1997)

22. Cohen, J., Olano, M., Manocha, D., Appearance preserving sim-
plification. In: Proceedings of SIGGRAPH ’98, pp. 115–122
(1998)

23. Sander, P., Snyder, J., Gortler, S., Hoppe, H.: Texture mapping
progressive meshes. In: Proceedings of SIGGRAPH ’01, pp. 409–
416 (2001)

24. Garland, M., Zhou, Y.: Quadric-based simplification any dimen-
sion. ACM Trans. Graph. 24(2) (2005)

25. Clark, J.H.: Hierarchical geometric models for visible surface al-
gorithms. Commun. ACM 19(10), 547–554 (1976)

26. Funkhouser, T.A.: Database and display algorithms for interactive
visualization of architectural models. Ph.D. Dissertation, The Uni-
versity of California at Berkeley (1993)

27. Giegl, M., Wimmer, M.: Unpopping: solving the image-space
blend problem. available at www.cg.tuwien.ac.at/research/vr/ un-
popping/unpopping.pdf, submitted to Journal of Graphics Tools,
Special Issue on Hardware-Accelerated Rendering Techniques
(2005)

28. Xia, J.C., El-Sana, J., Varshney, A.: Adaptive real-time level-of-
detail-based rendering for polygonal models. IEEE Trans. Vis.
Comput. Graph. 3(2), 171–183 (1997)

29. El-Sana, J., Chiang, Y.J.: External memory view-dependent sim-
plification. Comput. Graph. Forum 19(3), 139–150 (2000)

30. Luebke, D., Erikson, C.: View-dependent simplification of arbi-
trary polygonal environments. In: Proceedings of the SIGGRAPH
’97, vol. 31, pp. 199–208 (1997)

31. Cignoni, P. et al.: External memory management and simplifica-
tion of huge meshes. IEEE Trans. Vis. Comput. Graph. 9(4), 525–
537 (2003)

32. Shafer, E., Garland, M.: A multiresolution representation for mas-
sive meshes. IEEE Trans. Vis. Comput. Graph. 11(2), 139–148
(2005)

33. Chen, H.K. et al.: A linear time algorithm for high-quality mesh
simplification. In: Proceedings of the IEEE 6th International Sym-
posium on Multimedia Software Engineering, pp. 169–176 (2004)

34. Chen, H.K. et al.: A novel cache-based approach to large mesh
simplification. J. Inf. Sci. Eng. (to appear)

35. Levoy, M. et al.: The Digital Michelangelo Project: 3D scanning
of large statues. In: Proceedings of the SIGGRAPH ’00, pp. 131–
144 (2000)

36. Garland, M., Heckbert, P.S.: QSlim v.2.0 Simplification Soft-
ware, Dept. of Computer Science, University of Illinois,
http://graphics.cs.uiuc.edu/∼garland/software/QSlim.html (1999)

37. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error
on simplified surfaces. In: Proceedings of the Eurographics ’98,
vol. 17, no. 2, pp. 167–174 (1998)

38. Houle, J., Poulin, P.: Simplification and real-time smooth transi-
tions of articulated meshes. In: Proceedings of the Graphics Inter-
face ’01, pp. 55–60 (2001)

39. Lin, C.H., Lee, T.Y.: Metamorphosis of 3D polyhedral models
using progressive connectivity transformations. IEEE Trans. Vis.
Comput. Graph. 11(1), 2–12 (2005)

COPYRIGHT INFORMATION

TITLE: Generating high-quality discrete LOD meshes for 3D
computer games in linear time

SOURCE: Multimedia Syst 11 no5 Je 2006

The magazine publisher is the copyright holder of this article and it
is reproduced with permission. Further reproduction of this article in
violation of the copyright is prohibited. To contact the publisher:
http://www.springerlink.com/content/1432-1882/

